Advertisements
Advertisements
प्रश्न
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
उत्तर
m = `1/[ 3 - 2sqrt2 ]`
m = `1/[ 3 - 2sqrt2 ] xx [ 3 + 2sqrt2 ]/[ 3 + 2sqrt2 ]`
m = `[ 3 + 2sqrt2 ]/[ (3)^2 - (2sqrt2)^2 ]`
m = `[ 3 + 2sqrt2 ]/[ 9 - 8 ]`
m = 3 +2√2
⇒ m2 = ( 3 + 2√2)2
= (3)2 + 2 x 3 x 2√2 + (2√2)2
= 9 + 12√2 + 8
= 17 + 12√2
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3 /sqrt5`
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the lowest rationalising factor of : √5 - √2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`