Advertisements
Advertisements
प्रश्न
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
उत्तर
m = `1/[ 3 - 2sqrt2 ]`
m = `1/[ 3 - 2sqrt2 ] xx [ 3 + 2sqrt2 ]/[ 3 + 2sqrt2 ]`
m = `[ 3 + 2sqrt2 ]/[ (3)^2 - (2sqrt2)^2 ]`
m = `[ 3 + 2sqrt2 ]/[ 9 - 8 ]`
m = 3 +2√2
⇒ m2 = ( 3 + 2√2)2
= (3)2 + 2 x 3 x 2√2 + (2√2)2
= 9 + 12√2 + 8
= 17 + 12√2
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3 /sqrt5`
Rationalize the denominator.
`1/sqrt14`
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If x = 1 - √2, find the value of `( x - 1/x )^3`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`