Advertisements
Advertisements
प्रश्न
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
उत्तर
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
`3/[ sqrt3 - sqrt2 ] xx [ sqrt3 + sqrt2 ]/[ sqrt3 + sqrt2 ]= asqrt3 - bsqrt2`
`(3sqrt3 + 3sqrt2)/ ((sqrt3^2) - (sqrt2^2)) = asqrt3 - bsqrt2`
`(3sqrt3 + 3sqrt2) / (3-2) = asqrt3 - bsqrt2`
`(3sqrt3 + 3sqrt2)/1 = asqrt3 - bsqrt2`
`a = sqrt3 - bsqrt2 = 3sqrt3 + 3sqrt2`
∴ a= 3 and b= -3
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`5/sqrt 7`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the lowest rationalising factor of 5√2.
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
Rationalise the denominator `5/(3sqrt(5))`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).