Advertisements
Advertisements
प्रश्न
Rationalise the denominator `5/(3sqrt(5))`
उत्तर
`5/(3sqrt(5)) = 5/(3sqrt(5)) xx sqrt(5)/sqrt(5)`
= `(5sqrt(5))/(3 xx 5)`
= `sqrt(5)/3`
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the lowest rationalising factor of : 7 - √7
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`