Advertisements
Advertisements
प्रश्न
Rationalise the denominator `sqrt(75)/sqrt(18)`
उत्तर
`sqrt(75)/sqrt(18) = sqrt(3 xx 25)/sqrt(2 xx 9)`
= `(5sqrt(3))/(3sqrt(2))`
= `(5sqrt(3))/(3sqrt(2)) xx sqrt(2)/sqrt(2)`
= `(5sqrt(6))/(3 xx 2)`
= `(5sqrt(6))/6`
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the lowest rationalising factor of : 7 - √7
Write the lowest rationalising factor of : √5 - √2
Write the lowest rationalising factor of : √13 + 3
Write the lowest rationalising factor of : 15 - 3√2
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If x = 1 - √2, find the value of `( x - 1/x )^3`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`