Advertisements
Advertisements
प्रश्न
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
उत्तर
y2 = `[( sqrt5 + 2 )/( sqrt5 - 2 )]^2 = [ 5 + 4 + 4sqrt5 ]/[ 5 + 4 - 4sqrt5 ] = [ 9 + 4sqrt5 ]/[ 9 - 4sqrt5 ]`
= `[ 9 + 4sqrt5 ]/[ 9 - 4sqrt5 ] xx [ 9 + 4sqrt5 ]/[ 9 + 4sqrt5 ] = ( 9 + 4sqrt5)^2/[(9)^2 - (4sqrt5)^2] = [ 81 + 80 + 72sqrt5 ]/[ 81 - 80 ]`
= `161 + 72sqrt5`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`6/(9sqrt 3)`
Rationalize the denominator.
`11 / sqrt 3`
Write the lowest rationalising factor of : 15 - 3√2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find :
x2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`