Advertisements
Advertisements
Question
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
Solution
y2 = `[( sqrt5 + 2 )/( sqrt5 - 2 )]^2 = [ 5 + 4 + 4sqrt5 ]/[ 5 + 4 - 4sqrt5 ] = [ 9 + 4sqrt5 ]/[ 9 - 4sqrt5 ]`
= `[ 9 + 4sqrt5 ]/[ 9 - 4sqrt5 ] xx [ 9 + 4sqrt5 ]/[ 9 + 4sqrt5 ] = ( 9 + 4sqrt5)^2/[(9)^2 - (4sqrt5)^2] = [ 81 + 80 + 72sqrt5 ]/[ 81 - 80 ]`
= `161 + 72sqrt5`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/sqrt14`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of : √24
Write the lowest rationalising factor of : 15 - 3√2
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`