Advertisements
Advertisements
Question
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
Solution
`[ 2 + sqrt3 ]/[ 2 - sqrt3 ] xx [ 2 + sqrt3 ]/[ 2 + sqrt3] = a + bsqrt3`
= `[ (2 + sqrt3)^2 ]/[ (2)^2 - (sqrt3)^2 ] = a + bsqrt3`
= `[ 4 + 3 + 4sqrt3]/[ 4 - 3 ] = a + bsqrt3`
7 + 4√3 = a + b√3
a = 7, b = 4
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3 /sqrt5`
Rationalize the denominator.
`11 / sqrt 3`
Write the lowest rationalising factor of √5 - 3.
Write the lowest rationalising factor of : √5 - √2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If x = 1 - √2, find the value of `( x - 1/x )^3`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator `5/(3sqrt(5))`