Advertisements
Advertisements
Question
If x = 1 - √2, find the value of `( x - 1/x )^3`
Solution
Given that x = 1 - √2
We need to find the value of `( x - 1/x )^3`
Since x = 1 - √2, we have
`1/x = 1/( 1 - sqrt2) xx ( 1 + sqrt2 )/( 1 + sqrt2 )`
⇒ `1/x = (1 + sqrt2)/( (1)^2 - (sqrt2)^2 )` [ Since ( a - b )( a + b ) = a2 - b2 ]
⇒ `1/x = [ 1 + sqrt2 ]/[ 1 - 2 ]`
⇒ `1/x = [ 1 + sqrt2 ]/-1`
⇒ `1/x = -( 1 + sqrt2 )` .....(1)
Thus, `( x - 1/x ) = ( 1 - √2 ) - (-( 1 + sqrt2))`
⇒ `( x - 1/x ) = 1 - √2 + 1 + √2`
⇒ `( x - 1/x ) = 2`
⇒ `( x - 1/x )^3 = 2^3`
⇒ `( x - 1/x )^3 = 8`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`6/(9sqrt 3)`
Rationalize the denominator.
`11 / sqrt 3`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of : √5 - √2
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x = 2√3 + 2√2 , find : `(x + 1/x)`
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`