English

If X = 1 - √2, Find the Value of ( X - 1/X )^3 - Mathematics

Advertisements
Advertisements

Question

If x = 1 - √2, find the value of `( x - 1/x )^3`

Sum

Solution

Given that x = 1 - √2
We need to find the value of `( x - 1/x )^3`

Since x = 1 - √2, we have 
`1/x = 1/( 1 - sqrt2) xx ( 1 + sqrt2 )/( 1 + sqrt2 )`

⇒ `1/x = (1 + sqrt2)/( (1)^2 - (sqrt2)^2 )`      [ Since ( a - b )( a + b ) = a2 - b2 ]

⇒ `1/x = [ 1 + sqrt2 ]/[ 1 - 2 ]`

⇒ `1/x = [ 1 + sqrt2 ]/-1`

⇒ `1/x = -( 1 + sqrt2 )`              .....(1)

Thus, `( x - 1/x ) = ( 1 - √2 ) - (-( 1 + sqrt2))`

⇒ `( x - 1/x ) = 1 - √2 + 1 + √2`

⇒ `( x - 1/x ) = 2`

⇒ `( x - 1/x )^3 = 2^3`

⇒ `( x - 1/x )^3 = 8`

shaalaa.com
Rationalisation of Surds
  Is there an error in this question or solution?
Chapter 1: Rational and Irrational Numbers - Exercise 1 (C) [Page 22]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 1 Rational and Irrational Numbers
Exercise 1 (C) | Q 9 | Page 22
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×