Advertisements
Advertisements
प्रश्न
If x = 1 - √2, find the value of `( x - 1/x )^3`
उत्तर
Given that x = 1 - √2
We need to find the value of `( x - 1/x )^3`
Since x = 1 - √2, we have
`1/x = 1/( 1 - sqrt2) xx ( 1 + sqrt2 )/( 1 + sqrt2 )`
⇒ `1/x = (1 + sqrt2)/( (1)^2 - (sqrt2)^2 )` [ Since ( a - b )( a + b ) = a2 - b2 ]
⇒ `1/x = [ 1 + sqrt2 ]/[ 1 - 2 ]`
⇒ `1/x = [ 1 + sqrt2 ]/-1`
⇒ `1/x = -( 1 + sqrt2 )` .....(1)
Thus, `( x - 1/x ) = ( 1 - √2 ) - (-( 1 + sqrt2))`
⇒ `( x - 1/x ) = 1 - √2 + 1 + √2`
⇒ `( x - 1/x ) = 2`
⇒ `( x - 1/x )^3 = 2^3`
⇒ `( x - 1/x )^3 = 8`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt14`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the lowest rationalising factor of : √5 - √2
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If x = 2√3 + 2√2 , find : `(x + 1/x)`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`