Advertisements
Advertisements
प्रश्न
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
उत्तर
`( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
= `( 4 - √5 )/( 4 + √5 ) xx ( 4 - √5)/( 4 - √5 )+ ( 4 + √5 )/( 4 - √5 ) xx ( 4 + √5 )/( 4 + √5 )`
= `( 4 - √5)^2/[(4)^2 - (√5)^2] + ( 4 + √5)^2/[(4)^2 - (√5)^2]`
= `[ 16 + 5 - 8√5 ]/[ 16 - 5 ] + [ 16 + 5 + 8√5 ]/[ 16 - 5]`
= `[ 21 - 8√5 ]/11 + [ 21 + 8√5 ]/11`
= `[ 21 - 8√5 + 21 + 8√5 ]/11`
= `42/11 = 3 9/11`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3 /sqrt5`
Rationalize the denominator.
`6/(9sqrt 3)`
Write the lowest rationalising factor of : √5 - √2
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
Rationalise the denominator `5/(3sqrt(5))`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`