Advertisements
Advertisements
प्रश्न
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
उत्तर
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
`[5 + 3sqrt2]/[ 5 - 3sqrt2] xx [5 + 3sqrt2]/[ 5 + 3sqrt2]= a + bsqrt2`
`[ ( 5 + 3sqrt2)^2 ]/[ (5)^2 - ( 3sqrt2)^2 ] = a + bsqrt2`
`[ 25 + 18 + 30sqrt2 ]/[ 25 - 18 ] = a + bsqrt2`
`[ 43 + 30sqrt2 ]/7 = a + bsqrt2`
`a = 43/7, b = 30/7`
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Write the lowest rationalising factor of 5√2.
Write the lowest rationalising factor of : 15 - 3√2
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
Rationalise the denominator `5/(3sqrt(5))`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`