Advertisements
Advertisements
प्रश्न
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
उत्तर
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
= `[ 22(2sqrt3 - 1) + 17(2sqrt3 + 1)]/[(2sqrt3 + 1)( 2sqrt3 -1 )]`
= `[ 44sqrt3 - 22 + 34sqrt3 + 17]/[ (2sqrt3)^2 - 1 ]`
=`[ 78sqrt3 - 5]/[ 12 - 1]`
= `[ 78sqrt3 - 5 ]/11`
APPEARS IN
संबंधित प्रश्न
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Draw a line segment of length `sqrt3` cm.
Draw a line segment of length `sqrt8` cm.
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`