Advertisements
Advertisements
प्रश्न
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`
उत्तर
Given: x = 2 + `sqrt3`
`1/x = 1/(2 + sqrt3) xx (2 - sqrt3)/(2 - sqrt3)`
`= (2 - sqrt3)/((2)^2 - (sqrt3)^2)`
`= (2 - sqrt3)/(4 - 3)`
`= 2 - sqrt3`
Now,
`x + 1/x = 2 + cancel(sqrt3) + 2 - cancel(sqrt3)`
`x + 1/x = 2 + 2`
`x + 1/x`= 4
`therefore x^3 + 1/x^3`
`= (x + 1/x)^3 - 3 * cancel(x) * 1/cancel(x) (x + 1/x)`
`= (4)^3 - 3 xx 4`
= 64 - 12
= 52
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Draw a line segment of length `sqrt5` cm.