Advertisements
Advertisements
प्रश्न
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`
उत्तर
Given: x = 3 + `2sqrt2`
`1/x = 1/(3 + 2sqrt2) xx (3 - 2sqrt2)/(3 - 2sqrt2)`
`1/x = (3 - 2sqrt2)/((3)^2 - (2sqrt2)^2)`
`1/x = (3 - 2sqrt2)/(9 - 8)`
`1/x = 3 - 2sqrt2`
Now, `x + 1/x = 3 + cancel(2sqrt2) + 3 - cancel(2sqrt2)`
`x + 1/x = 6`
Squaring on both sides
`(x + 1/x)^2 = (6)^2`
`=> x^2 + 1/x^2 + 2 xx cancel(x) xx 1/cancel(x) = 36`
`=x^2 + 1/x^2 = 36 - 2`
`= x^2 + 1/x^2 = 34`
APPEARS IN
संबंधित प्रश्न
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`
Using the following figure, show that BD = `sqrtx`.