Advertisements
Advertisements
प्रश्न
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`
उत्तर
`(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2)`
`=> (3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) xx (3sqrt2 - 2sqrt3)/(3sqrt2 - 2sqrt3) + (2sqrt3)/(sqrt3 - sqrt2) xx (sqrt3 + sqrt2)/(sqrt3 + sqrt2)`
`=> ((3sqrt2 - 2sqrt3)^2)/((3sqrt2)^2 - (2sqrt3)^2) + (2sqrt3 (sqrt3 + sqrt2))/((sqrt3)^2 - (sqrt2)^2)`
`=> ((3sqrt2)^2 + (2sqrt3)^2 - 2 xx 3sqrt2 xx 2sqrt3)/((9 xx 2) - (4 xx 3)) + (6 + 2sqrt6)/(3 - 2)`
`=> (18 + 12 - 12sqrt6)/(18 - 12) + 6 + 2sqrt6`
`=> (30 - 12sqrt6)/6 + 6 + 2sqrt6`
`=> (cancel(6) (5 - 2sqrt6))/cancel(6) + 6 + 2sqrt6`
`=> 5 - cancel(2sqrt6) + 6 + cancel(2sqrt6)`
= 5 + 6
= 11
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
Draw a line segment of length `sqrt3` cm.