Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
उत्तर
`1/(sqrt 7 + sqrt 2)`
`= 1/(sqrt 7 + sqrt 2) xx (sqrt 7 - sqrt 2)/(sqrt 7 - sqrt 2)`
`= (sqrt 7 - sqrt 2)/((sqrt 7)^2 - (sqrt 2)^2)` ....`[(a + b)(a - b) = a^2- b^2]`
`= (sqrt 7 - sqrt 2)/(7-2)`
`= (sqrt 7 - sqrt 2)/5`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`