Advertisements
Advertisements
Question
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Solution
`1/(sqrt 7 + sqrt 2)`
`= 1/(sqrt 7 + sqrt 2) xx (sqrt 7 - sqrt 2)/(sqrt 7 - sqrt 2)`
`= (sqrt 7 - sqrt 2)/((sqrt 7)^2 - (sqrt 2)^2)` ....`[(a + b)(a - b) = a^2- b^2]`
`= (sqrt 7 - sqrt 2)/(7-2)`
`= (sqrt 7 - sqrt 2)/5`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2