Advertisements
Advertisements
Question
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
Solution
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
Rationalizing the denominator of each term, we have
= `(3sqrt(2)(sqrt(6) + sqrt(3)))/((sqrt(6) - sqrt(3))(sqrt(6) + sqrt(3))) - (4sqrt(3)(sqrt(6) + sqrt(2)))/((sqrt(6) - sqrt(2))(sqrt(6) + sqrt(2))) + (2sqrt(3)(sqrt(6) - 2))/((sqrt(6) + 2)(sqrt(6) - 2))`
= `(3sqrt(12) + 3sqrt(6))/(6 - 3) - (4sqrt(18) + 4sqrt(6))/(6 - 2) + (2sqrt(18) - 4sqrt(3))/(2)`
= `(3sqrt(12) + 3sqrt(6))/(3) - (4sqrt(18) + 4sqrt(6))/(4) + (2sqrt(18) - 4sqrt(3))/(2)`
= `sqrt(12) + sqrt(6) - sqrt(18) - sqrt(6) + sqrt(18) - 2sqrt(3)`
= `sqrt(12) - 2sqrt(3)`
= `2sqrt(3) - 2sqrt(3)`
= 0
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Draw a line segment of length `sqrt3` cm.