Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Solution
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
= `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)) xx (3sqrt(5) + 2sqrt(6))/(3sqrt(5) + 2sqrt(6)`
= `(6sqrt(30) + 24 - 15 - 2sqrt(30))/((3sqrt(5))^2 - (2sqrt(6))^2`
= `(6sqrt(30) + 9 - 2sqrt(30))/(45 - 24)`
= `(4sqrt(30) + 9)/(21)`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
Using the following figure, show that BD = `sqrtx`.