Advertisements
Advertisements
Question
Using the following figure, show that BD = `sqrtx`.
Solution
AB = x and BC = 1
AC = AB + BC
= x + 1
diameter = x + 1
radius OA = OD = OC = OB = OC - BC
`= (x + 1)/2 - 1 = (x + 1 -2)/2 = (x - 1)/2`
Using pythagoras in ΔBOD
P2 + B2 = H2
`"P"^2 + ((x - 1)/2)^2 = ((x + 1)/2)^2`
`"P"^2 = ((x + 1)/2)^2 - ((x - 1)/2)^2`
= `((x + 1)^2 - (x - 1)^2)/4`
`= ((x^2 + 1 + 2x) - (x^2 + 1 - 2x))/4`
`= (x^2 + 1 + 2x - x^2 - 1 + 2x)/4`
`"P"^2 = (4x)/4`
P2 = x
P = `sqrtx`
APPEARS IN
RELATED QUESTIONS
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`