Advertisements
Advertisements
Question
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
Solution
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
Rationalizing the denominator of each term, we have
= `(7sqrt(3)(sqrt(10) - sqrt(3)))/((sqrt(10) + sqrt(3))(sqrt(10) - sqrt(3))) - (2sqrt(5)(sqrt(6) - sqrt(5)))/((sqrt(6) + sqrt(5))(sqrt(6) - sqrt(5))) - (3sqrt(2)(3sqrt(2) - sqrt(15)))/((sqrt(15) + 3sqrt(2))(3sqrt(2)-sqrt(15))`
= `(7sqrt(3)(sqrt(10)- sqrt(3)))/(10 - 3) - (2sqrt(5)(sqrt(6) - sqrt(5)))/(6 - 5) - (3sqrt(2)(3sqrt(2) - sqrt(15)))/(18 - 15)`
= `sqrt3(sqrt10 - sqrt3) - 2sqrt5(sqrt6 - sqrt5) - sqrt2(3sqrt2 - sqrt15)`
= `sqrt30 - 3 - 2sqrt30 + 10 - 6 + sqrt30`
= 0 − 9 + 10
= 1
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
Draw a line segment of length `sqrt8` cm.