Advertisements
Advertisements
प्रश्न
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
उत्तर
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
Rationalizing the denominator of each term, we have
= `(7sqrt(3)(sqrt(10) - sqrt(3)))/((sqrt(10) + sqrt(3))(sqrt(10) - sqrt(3))) - (2sqrt(5)(sqrt(6) - sqrt(5)))/((sqrt(6) + sqrt(5))(sqrt(6) - sqrt(5))) - (3sqrt(2)(3sqrt(2) - sqrt(15)))/((sqrt(15) + 3sqrt(2))(3sqrt(2)-sqrt(15))`
= `(7sqrt(3)(sqrt(10)- sqrt(3)))/(10 - 3) - (2sqrt(5)(sqrt(6) - sqrt(5)))/(6 - 5) - (3sqrt(2)(3sqrt(2) - sqrt(15)))/(18 - 15)`
= `sqrt3(sqrt10 - sqrt3) - 2sqrt5(sqrt6 - sqrt5) - sqrt2(3sqrt2 - sqrt15)`
= `sqrt30 - 3 - 2sqrt30 + 10 - 6 + sqrt30`
= 0 − 9 + 10
= 1
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
Draw a line segment of length `sqrt3` cm.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`