Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
उत्तर
`12/(4sqrt3 - sqrt 2)`
`= 12/(4sqrt3 - sqrt 2) xx (4sqrt3 + sqrt 2)/(4sqrt3 + sqrt 2)`
`= (12 (4sqrt3 + sqrt 2))/((4sqrt3)^2 -(sqrt 2)^2) ...[(a+b)(a-b) = a^2 - b^2]`
`=(12 (4sqrt3 + sqrt 2))/(48 - 2)`
`= (12 (4sqrt3 + sqrt 2))/46`
`= (6 (4sqrt3 + sqrt 2))/23`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
Show that Negative of an irrational number is irrational.
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`
Using the following figure, show that BD = `sqrtx`.