Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
उत्तर
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
= `(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)) xx (2sqrt(3) - sqrt(6))/(2sqrt(3) - sqrt(6)`
= `((2sqrt(3) - sqrt(6))^2)/((2sqrt(3))^2 - (sqrt(6))^2`
= `(12 + 6 - 4sqrt(18))/(12 - 6)`
= `(18 - 4sqrt(18))/(6)`
= `(9 - 2sqrt(18))/(3)`
= `(9 - 6sqrt(2))/(3)`
= 3 - 2`sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`
Using the following figure, show that BD = `sqrtx`.