Advertisements
Advertisements
प्रश्न
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
उत्तर
x2 + y2
(x2 + y2) = (x + y)2 - 2xy ----(1)
Now, x + y = `(1)/((3 - 2sqrt(2))) + (1)/((3 + 2sqrt(2))`
= `((3 + 2sqrt(2)) + (3 - 2sqrt(2)))/((3 - 2sqrt(2))(3 + 2sqrt(2))`
= `(6)/(9 - 8)`
= 6
and xy = `(1)/((3 - 2sqrt(2))) xx (1)/((3 + 2sqrt(2))`
= `(1)/(9 - 8)`
= 1
substituting the valuesin (1), we get
(x2 + y2)
= (x + y)2 - 2xy
= 36 - 2
= 34
(x2 + y2)
= 34
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Using the following figure, show that BD = `sqrtx`.