Advertisements
Advertisements
प्रश्न
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
उत्तर
`(sqrt(3) - 1)/(sqrt(3) + 1)`
= `(sqrt(3) - 1)/(sqrt(3) + 1) xx (sqrt(3) - 1)/(sqrt(3) - 1)`
= `(sqrt(3) - 1)^2/((sqrt(3))^2 - (1)^2`
= `(3 -2 xx sqrt(3) xx 1 + 1)/(3 - 1)`
= `(4 - 2sqrt(3))/(2)`
= `2 - sqrt(3)`
= `2 + (-1) sqrt(3)`
= `"a" + "b"sqrt(3)`
Hence, a = 2 and b = -1.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalize the denominator.
`1/sqrt5`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`