Advertisements
Advertisements
प्रश्न
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
उत्तर
x = `7 + 4sqrt(3)`
∴ `(1)/x = (1)/(7 + 4sqrt(3))`
= `(1)/(7 + 4sqrt(3)) xx (7 - 4sqrt(3))/(7 - 4sqrt(3))`
= `(7 - 4sqrt(3))/(7^2 - (4sqrt(3))^2`
= `(7 - 4sqrt(3))/(49 - 48)`
= `(7 - 4sqrt(3))/(1)`
= `7 - 4sqrt(3)`
∴ `x + (1)/x `
= `(7 + 4sqrt(3)) + (7 - 4sqrt(3))`
= `7 + 4sqrt(3) + 7 - 4sqrt(3)`
= 14
Hence, `(x + (1)/x)^2`
= (14)2
= 196
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`