Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
उत्तर
`(42)/(2sqrt(3) + 3sqrt(2)`
= `(42)/(2sqrt(3) + 3sqrt(2)) xx (2sqrt(3) - 3sqrt(2))/(2sqrt(3) - 3sqrt(2)`
= `(42(2sqrt(3) - 3sqrt(2)))/((2sqrt(3))^2 - (3sqrt(2)^2)`
= `(84sqrt(3) - 126sqrt(2))/(12 - 18)`
= `(84sqrt(3) - 126sqrt(2))/(-6)`
= `-14sqrt(3) + 21sqrt(2)`
= `21sqrt(2) - 14sqrt(3)`
= `7(3sqrt(2) - 2sqrt(3))`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`1/sqrt5`
Rationalize the denominator.
`1/(sqrt 3 - sqrt 2)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Draw a line segment of length `sqrt3` cm.