Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
उत्तर
`(5)/(sqrt(7) - sqrt(2))`
= `(5)/(sqrt(7) - sqrt(2)) xx (sqrt(7) + sqrt(2))/(sqrt(7) + sqrt(2)`
= `(5(sqrt(7) + sqrt(2)))/((sqrt(7))^2 + (sqrt(2))^2)`
= `(5(sqrt(7) + sqrt(2)))/(7 - 2)`
= `(5(sqrt(7) + sqrt(2)))/(5)`
= `sqrt(7) + sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Draw a line segment of length `sqrt3` cm.