Advertisements
Advertisements
प्रश्न
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
उत्तर
Given - `sqrt5` = 2.2 and `sqrt10` = 3.2.
`5/(sqrt20 - sqrt10)`
`= 5/(sqrt20 - sqrt10) xx (sqrt20 + sqrt10)/(sqrt20 + sqrt10)`
`= (5 (sqrt(20) + sqrt10))/(20 - 10)`
`= (cancel(5)^1 (sqrt(20) + sqrt10))/(cancel(10)_2)`
`= (sqrt(20) + sqrt10)/2`
`= (sqrt(4 xx 5) + sqrt10)/2`
`= (2sqrt5 + sqrt10)/2`
`= (2(2.2) + 3.2)/2`
`= (4.4 + 3.2)/2`
`= 7.6/2`
= 3.8
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
Draw a line segment of length `sqrt3` cm.