Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
उत्तर
`3/(2 sqrt 5 - 3 sqrt 2)`
`= 3/(2 sqrt 5 - 3 sqrt 2) xx (2 sqrt 5 + 3 sqrt 2)/(2 sqrt 5 + 3 sqrt 2)`
`= (3(2 sqrt 5 + 3 sqrt 2))/((2 sqrt 5)^2 - (3 sqrt 2)^2)`
.....`[("a" + "b")("a" - "b") = "a"^2 - "b"^2]`
`= (3(2 sqrt 5 + 3 sqrt 2))/(4 xx 5 - 9 xx 2)`
`= (3(2 sqrt 5 + 3 sqrt 2))/(20 - 18)`
`= (3(2 sqrt 5 + 3 sqrt 2))/2`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`2/(3 sqrt 7)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`