Advertisements
Advertisements
प्रश्न
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
उत्तर
`x^2 + (1)/x^2`
`(x^2 + (1)/x^2) = (x + (1)/x)^2 -2` ----(1)
we will first find the value of `x + (1)/x`
`x + (1)/x = (4 - sqrt(15)) + (1)/((4 - sqrt(15))`
= `((4 - sqrt(15))^2 + 1)/((4 - sqrt(15))`
= `(16 + 15 - 8sqrt(15) + 1)/((4 - sqrt(15))`
= `(8(4 - sqrt(15)))/((4 - sqrt(15))`
= 8
substituting the valuesin (1)
`(x^2 + (1)/x^2) = (x + (1)/x)^2 -2`
= 82 - 2
= 64 - 2
= 62
`(x^2 + (1)/x^2)` = 62
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`