Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
उत्तर
`(3 - sqrt(3))/(2 + sqrt(2)`
= `(3 - sqrt(3))/(2 + sqrt(2)) xx (2 - sqrt(2))/(2 - sqrt(2)`
= `(3(2 - sqrt(2)) - sqrt(3)(2 - sqrt(2)))/((2)^2 - (sqrt(2))^2)`
= `(6 - 3sqrt(2) - 2sqrt(3) + sqrt(6))/(4 - 2)`
= `(6 - 3sqrt(2) - 2sqrt(3) + sqrt(6))/(2)`
APPEARS IN
संबंधित प्रश्न
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
Draw a line segment of length `sqrt8` cm.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`