Advertisements
Advertisements
प्रश्न
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
उत्तर
`(2 - sqrt3)/(sqrt3)`
`= (2 - sqrt3)/(sqrt3) xx sqrt3/sqrt3`
`= ((2 - sqrt3) xx sqrt3)/(sqrt3 xx sqrt3)`
`= (2sqrt3 - 3)/3`
= `2/(√3) - (√3)/(√3)`
`= (2 xx 1.7 - 3)/3`
`= (3.4 - 3)/3`
`= 0.4/3`
= 0.1
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of `1/[ √3 - √2 + 1]`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`