Advertisements
Advertisements
प्रश्न
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
उत्तर
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)`
= `(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) xx (3sqrt(2) + 2sqrt(3))/(3sqrt(2) + 2sqrt(3)`
= `((sqrt(2) + sqrt(3))(3sqrt(2) + 2sqrt(3)))/((3sqrt(2))^2 - (2sqrt(3))^2`
= `(sqrt(2)(3sqrt(2) + 2sqrt(3)) + sqrt(3)(3sqrt(2) + 2sqrt(3)))/((9 xx 2) - (4 xx 3))`
= `((3 xx 2 + 2sqrt(6)) + (3sqrt(6) + 2 xx 3))/(18 - 12)`
= `(6 + 2sqrt(6) + 3sqrt(6) + 6)/(6)`
= `(12 + 5sqrt(6))/(6)`
= `2 - (-5/6)sqrt(6)`
= `"a" - "b"sqrt(6)`
Hence, a = 2 and b = `-(5)/(6)`.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
Show that Negative of an irrational number is irrational.
Draw a line segment of length `sqrt8` cm.