Advertisements
Advertisements
प्रश्न
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
उत्तर
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)`
= `(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) xx (sqrt(11) - sqrt(7))/(sqrt(11) - sqrt(7)`
= `(sqrt(11) - sqrt(7))^2/((sqrt(11))^2 - (sqrt(7))^2`
= `((sqrt(11))^2 + (sqrt(7))^2 - 2 xx sqrt(11) xx sqrt(7))/(11 - 7)`
= `(11 + 7 - 2sqrt(77))/(4)`
= `(18 - 2sqrt(77))/(4)`
= `(18)/(4) - (2)/(4)sqrt(77)`
= `(9)/(2) - (1)/(2)sqrt(77)`
= `"a" - "b"sqrt(77)`
Hence, a = `(9)/(2)` and b = `(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Draw a line segment of length `sqrt3` cm.