Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`2/(3 sqrt 7)`
उत्तर
`2/(3 sqrt 7)`
`= 2/(3 sqrt 7) xx sqrt 7/sqrt7` ...[multiply numerator and denominator by `sqrt7`]
`= (2sqrt7)/(3 xx 7)`
`= (2sqrt 7)/21`
APPEARS IN
संबंधित प्रश्न
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Draw a line segment of length `sqrt5` cm.
Draw a line segment of length `sqrt3` cm.