Advertisements
Advertisements
प्रश्न
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
उत्तर
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
= `((sqrt(7) - sqrt(3))^2 - (sqrt(7) + sqrt(3))^2)/((sqrt(7) + sqrt(3))(sqrt(7) - sqrt(3))`
= `(7 + 3 - 2sqrt(21) - 7 - 3 - 2sqrt(21))/((sqrt(7))^2 - (sqrt(3))^2`
= `(-4sqrt(21))/(7 - 3)`
= `-sqrt(21)`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Draw a line segment of length `sqrt5` cm.