Advertisements
Advertisements
प्रश्न
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
उत्तर
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
`=> (sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) xx (sqrt(x^2 + y^2) + y)/(sqrt(x^2 - y^2) + x)`
`=> ((sqrt(x^2 + y^2) - y)(sqrt(x^2 + y^2) + y))/((x - sqrt(x^2 - y^2))(x + sqrt(x^2 - y^2)))`
`=> ((sqrt(x^2 + y^2))^2 - y^2)/(x^2 - (sqrt(x^2 - y^2))^2)`
`=> (x^2 + cancel(y^2) - cancel(y^2))/(cancel(x^2) - cancel(x^2) + y^2)`
`=> x^2/y^2`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt5`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
Simplify the following :
`(4sqrt(3))/((2 - sqrt(2))) - (30)/((4sqrt(3) - 3sqrt(2))) - (3sqrt(2))/((3 + 2sqrt(3))`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`