Advertisements
Advertisements
Question
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Solution
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
`=> (sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) xx (sqrt(x^2 + y^2) + y)/(sqrt(x^2 - y^2) + x)`
`=> ((sqrt(x^2 + y^2) - y)(sqrt(x^2 + y^2) + y))/((x - sqrt(x^2 - y^2))(x + sqrt(x^2 - y^2)))`
`=> ((sqrt(x^2 + y^2))^2 - y^2)/(x^2 - (sqrt(x^2 - y^2))^2)`
`=> (x^2 + cancel(y^2) - cancel(y^2))/(cancel(x^2) - cancel(x^2) + y^2)`
`=> x^2/y^2`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
Draw a line segment of length `sqrt8` cm.
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`