Advertisements
Advertisements
Question
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Solution
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
= `[ sqrt2]/[ sqrt6 - 2] - [ sqrt3 ]/[ sqrt6 + sqrt2 ] `
`= [ sqrt2( sqrt6 + sqrt2) - sqrt3( sqrt6 - sqrt2 )]/[ (sqrt6 - sqrt2)- (sqrt 6 + sqrt2)]`
= `[ sqrt12 + 2 - sqrt18 + sqrt6 ]/[ (sqrt6)^2 - (sqrt2)^2 ]`
= `[ 2sqrt3 + 2 - 3sqrt2 + sqrt6 ]/(6 - 2)`
= `[ 2sqrt3 + 2 - 3sqrt2 + sqrt6 ]/4`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(3 - sqrt(3))/(2 + sqrt(2)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
Show that Negative of an irrational number is irrational.
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`
Using the following figure, show that BD = `sqrtx`.