Advertisements
Advertisements
Question
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Solution
`3/(2 sqrt 5 - 3 sqrt 2)`
`= 3/(2 sqrt 5 - 3 sqrt 2) xx (2 sqrt 5 + 3 sqrt 2)/(2 sqrt 5 + 3 sqrt 2)`
`= (3(2 sqrt 5 + 3 sqrt 2))/((2 sqrt 5)^2 - (3 sqrt 2)^2)`
.....`[("a" + "b")("a" - "b") = "a"^2 - "b"^2]`
`= (3(2 sqrt 5 + 3 sqrt 2))/(4 xx 5 - 9 xx 2)`
`= (3(2 sqrt 5 + 3 sqrt 2))/(20 - 18)`
`= (3(2 sqrt 5 + 3 sqrt 2))/2`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(7sqrt(3) - 5sqrt(2))/(4sqrt(3) + 3sqrt(2)) = "a" - "b"sqrt(6)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Show that Negative of an irrational number is irrational.