Advertisements
Advertisements
प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
उत्तर
`3/(2 sqrt 5 - 3 sqrt 2)`
`= 3/(2 sqrt 5 - 3 sqrt 2) xx (2 sqrt 5 + 3 sqrt 2)/(2 sqrt 5 + 3 sqrt 2)`
`= (3(2 sqrt 5 + 3 sqrt 2))/((2 sqrt 5)^2 - (3 sqrt 2)^2)`
.....`[("a" + "b")("a" - "b") = "a"^2 - "b"^2]`
`= (3(2 sqrt 5 + 3 sqrt 2))/(4 xx 5 - 9 xx 2)`
`= (3(2 sqrt 5 + 3 sqrt 2))/(20 - 18)`
`= (3(2 sqrt 5 + 3 sqrt 2))/2`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(sqrt 7 + sqrt 2)`
Rationalize the denominator.
`1/sqrt5`
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`