Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
उत्तर
`(1)/(sqrt(3) + sqrt(2))`
= `(1)/(sqrt(3) + sqrt(2)) xx (sqrt(3) - sqrt(2))/(sqrt(3) - sqrt(2)`
= `(sqrt(3) - sqrt(2))/((sqrt(3))^2 - (sqrt(2))^2)`
= `(sqrt(3) - sqrt(2))/(3 - 2)`
= `(sqrt(3) - sqrt(2))/(1)`
= `sqrt(3) - sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
Draw a line segment of length `sqrt5` cm.
Draw a line segment of length `sqrt8` cm.