Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Solution
`(1)/(sqrt(3) + sqrt(2))`
= `(1)/(sqrt(3) + sqrt(2)) xx (sqrt(3) - sqrt(2))/(sqrt(3) - sqrt(2)`
= `(sqrt(3) - sqrt(2))/((sqrt(3))^2 - (sqrt(2))^2)`
= `(sqrt(3) - sqrt(2))/(3 - 2)`
= `(sqrt(3) - sqrt(2))/(1)`
= `sqrt(3) - sqrt(2)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Show that Negative of an irrational number is irrational.