Advertisements
Advertisements
Question
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Solution
x3 + y3
(x3 + y3) = (x + y)3 - 3xy (x + y) ----(1)
Now, x + y = `(1)/((3 - 2sqrt(2))) + (1)/((3 + 2sqrt(2))`
= `((3 + 2sqrt(2)) + (3 - 2sqrt(2)))/((3 - 2sqrt(2))(3 + 2sqrt(2))`
= `(6)/(9 - 8)`
= 6
and xy = `(1)/((3 - 2sqrt(2))) xx (1)/((3 + 2sqrt(2))`
= `(1)/(9 - 8)`
= 1
substituting the valuesin (1), we get
(x3 + y3)
= (x + y)3 - 3xy (x + y)
= 216 - 3 x 6
= 198
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`