Advertisements
Advertisements
प्रश्न
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
उत्तर
x3 + y3
(x3 + y3) = (x + y)3 - 3xy (x + y) ----(1)
Now, x + y = `(1)/((3 - 2sqrt(2))) + (1)/((3 + 2sqrt(2))`
= `((3 + 2sqrt(2)) + (3 - 2sqrt(2)))/((3 - 2sqrt(2))(3 + 2sqrt(2))`
= `(6)/(9 - 8)`
= 6
and xy = `(1)/((3 - 2sqrt(2))) xx (1)/((3 + 2sqrt(2))`
= `(1)/(9 - 8)`
= 1
substituting the valuesin (1), we get
(x3 + y3)
= (x + y)3 - 3xy (x + y)
= 216 - 3 x 6
= 198
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`
Draw a line segment of length `sqrt5` cm.