Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
उत्तर
`(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)`
= `(3sqrt(5) + sqrt(7))/(3sqrt(5) - sqrt(7)) xx (3sqrt(5) + sqrt(7))/(3sqrt(5) + sqrt(7)`
= `((3sqrt(5) + sqrt(7))^2)/((3sqrt(5))^2 - (sqrt(7))^2`
= `(45 + 7 + 6sqrt(35))/(45 - 7)`
= `(52 + 6sqrt(35))/(38)`
= `(26 + 3sqrt(35))/(19)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Rationalise the denominators of : `[sqrt6 - sqrt5]/[sqrt6 + sqrt5]`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify the following
`(3)/(5 - sqrt(3)) + (2)/(5 + sqrt(3)`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
Draw a line segment of length `sqrt5` cm.