Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
उत्तर
= `[ √3 + 1 ]/[ √3 - 1 ] xx [ √3 + 1 ]/[ √3 + 1 ]`
= `[( √3 + 1 )^2]/[( √3 )^2 - (1)^2 ]`
= `[ 3 + 1 + 2√3 ]/[ 3 - 1]`
= `[ 4 + 2√3 ]/[2]`
= `[ 2( 2 + √3 )]/[ 2 ]`
= 2 + √3
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify the following
`(sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) + (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
Draw a line segment of length `sqrt5` cm.
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`